しょぼんブログ

数学の色々とか様々とか

tanの半角公式のような何かを見つけた

命題1
 0\lt\theta\lt\dfrac{\pi}{2}のとき
 \tan{\dfrac{\theta}{2}}= \sqrt{\dfrac{1}{\tan^2{\theta}}+1}-\sqrt{\dfrac{1}{\tan^2{\theta}}}

命題2
 \dfrac{\pi}{2}\lt\theta\lt\piのとき
 \tan{\dfrac{\theta}{2}}= \sqrt{\dfrac{1}{\tan^2{\theta}}+1}+\sqrt{\dfrac{1}{\tan^2{\theta}}}

命題1の証明

 \tanの2倍角公式  \tan{\theta}=\dfrac{2\tan{\dfrac{\theta}{2}}}{1-\tan^2{\dfrac{\theta}{2}}}を使う

 \sqrt{\dfrac{1}{\tan^2{\theta}}+1}-\sqrt{\dfrac{1}{\tan^2{\theta}}}
 =\sqrt{\left(\dfrac{1-\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}\right)^2+1}-\sqrt{\left(\dfrac{1-\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}\right)^2}
 =\sqrt{\dfrac{1-2\tan^2{\dfrac{\theta}{2}}+\tan^4{\dfrac{\theta}{2}}}{4\tan^2{\dfrac{\theta}{2}}}+\dfrac{4\tan^2{\dfrac{\theta}{2}}}{4\tan^2{\dfrac{\theta}{2}}}}-\sqrt{\left(\dfrac{1-\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}\right)^2}
 =\sqrt{\left(\dfrac{1+\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}\right)^2}-\sqrt{\left(\dfrac{1-\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}\right)^2}
ここで,  0\lt\dfrac{\theta}{2}\lt\dfrac{\pi}{4}であるので, 1+\tan^2{\dfrac{\theta}{2}}\gt 0,  1-\tan^2{\dfrac{\theta}{2}}\gt 0,  2\tan{\dfrac{\theta}{2}}\gt 0
ゆえに
  \dfrac{1+\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}-\dfrac{1-\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}
 =\dfrac{2\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}
 =\tan{\dfrac{\theta}{2}}

命題2の証明

命題1の証明と同様にして
 \sqrt{\dfrac{1}{\tan^2{\theta}}+1}+\sqrt{\dfrac{1}{\tan^2{\theta}}}
 =\sqrt{\left(\dfrac{1+\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}\right)^2}+\sqrt{\left(\dfrac{1-\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}\right)^2}
ここで,  \dfrac{\pi}{4}\lt\dfrac{\theta}{2}\lt\dfrac{\pi}{2}であるので, 1+\tan^2{\dfrac{\theta}{2}}\gt 0,  1-\tan^2{\dfrac{\theta}{2}}\lt 0,  2\tan{\dfrac{\theta}{2}}\gt 0
ゆえに
 =\dfrac{1+\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}+\dfrac{tan^2{\dfrac{\theta}{2}}-1}{2\tan{\dfrac{\theta}{2}}}
 =\dfrac{2\tan^2{\dfrac{\theta}{2}}}{2\tan{\dfrac{\theta}{2}}}
 =\tan{\dfrac{\theta}{2}}

そのほか

 \dfrac{1}{\sqrt{\dfrac{1}{\tan^2{\theta}}+1}+\sqrt{\dfrac{1}{\tan^2{\theta}}}}=\sqrt{\dfrac{1}{\tan^2{\theta}}+1}-\sqrt{\dfrac{1}{\tan^2{\theta}}}